

How BIM supports new ways to develop and apply regulations

Bart Luiten, IJsbrand van Straalen

IRCC Conference, Bergen, Norway May 20th, 2011

We define a Building Information Model – BIM as:

A digital description of a specific building relevant for its entire life-cycle

This <u>digital description</u> contains information which is:

- Meaningful for decision processes and software applications
- Complete for all disciplines over the life-cycle
- Correct unambiguous and up-to-date
- Uniform standardized information structure and format
- Transparent including management information

Important consequence of "entire life-cycle": functions and objects

Source: COINS - www.coinsweb.nl

A BIM should contain functions and objects

BIM can help to develop and apply regulations better and faster in practice

- Five basic levels:
 - 1. Better recording of the designed building objects
 - 2. Recording building functions with required performance (e.g. regulations) and linking to building objects
 - 3. Linking building objects to proofs of compliance to regulations
 - 4. Linking building objects to software to check compliance
 - 5. Automatically checking compliance to regulations

For example: fire resistance of a door

- 1. Type of door = ..., thickness = ..., material =
- 2. Fire regulations, art. x.y: fire resistance > 30 min.
- 3. Laboratory test that proofs: fire resistance = 37 min.
- 4. Link to software to calculate fire resistance
- 5. Rule: IF material = ... AND thickness >= THEN fire resistance > 30 min.

Suppose we are 15 years ahead, and we can do all that

- What would have changed
 - For the building and construction process?
 - For the way we make and apply regulations?
 - For the way we model our buildings in BIM's?

What should the authorities do to make this happen?

Process: performance based

- 1. Contracts => only specifying performance + monitoring methods
- 2. Design => optimisation based on continuous monitoring
- 3. Design => dynamic use of validation methods for optimisation during design in stead of static validation at the end
- 4. Construction process => continuous monitoring based on as built
- 5. Commissioning => reports in terms of performances; after one year
- 6. Use phase => incentives based on measured performance

Authorities

- Permit phasing => no more permits during design phase, only proving compliance at commissioning
- 2. Performance checking => automated (level 3 or higher)
- Complexity => Optimisatisation of multiple, sometimes contradicting aspects (e.g. sustainability);
- 4. Strictly performance based with standardized verification methods
- 5. Publishing => Computer interpretable

BIM

- 1. Modelling functions and objects (see e.g. Coins)
- 2. Object library in line with terminology used in regulations
- 3. Open standards for data modeling
- 4. Open standards for defining rules

Next steps

- For TNO: research and development
 - Continue enabling 5 levels of BIM support + demonstrate, e.g.
 - Enabling rules in BIM environment
 - Experimenting with defining regulations in rules
- For the BIM community
 - Add functions (and performance etc.) to BIM standards
 - Adding standardized rules to BIM standards
- For the regulations community and authorities
 - > ???? Please, your suggestions ????